3.6.41 \(\int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [541]

Optimal. Leaf size=291 \[ -\frac {4 a^2 (12 A+9 B+8 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {4 a^2 (7 A+6 B+5 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {4 a^2 (12 A+9 B+8 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {4 a^2 (7 A+6 B+5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {2 a^2 (21 A+27 B+19 C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{105 d}+\frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {2 (9 B+4 C) \sec ^{\frac {5}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d} \]

[Out]

4/21*a^2*(7*A+6*B+5*C)*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/105*a^2*(21*A+27*B+19*C)*sec(d*x+c)^(5/2)*sin(d*x+c)/d+
2/9*C*sec(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*sin(d*x+c)/d+2/63*(9*B+4*C)*sec(d*x+c)^(5/2)*(a^2+a^2*sec(d*x+c))*si
n(d*x+c)/d+4/15*a^2*(12*A+9*B+8*C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d-4/15*a^2*(12*A+9*B+8*C)*(cos(1/2*d*x+1/2*c)^2
)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+4/21*a^2*
(7*A+6*B+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)
^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.33, antiderivative size = 291, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.186, Rules used = {4173, 4103, 4082, 3872, 3853, 3856, 2719, 2720} \begin {gather*} \frac {2 a^2 (21 A+27 B+19 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{105 d}+\frac {4 a^2 (7 A+6 B+5 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{21 d}+\frac {4 a^2 (12 A+9 B+8 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{15 d}+\frac {4 a^2 (7 A+6 B+5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}-\frac {4 a^2 (12 A+9 B+8 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 (9 B+4 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{63 d}+\frac {2 C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^2}{9 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(-4*a^2*(12*A + 9*B + 8*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(15*d) + (4*a^2*(7
*A + 6*B + 5*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (4*a^2*(12*A + 9*B +
 8*C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(15*d) + (4*a^2*(7*A + 6*B + 5*C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(21*
d) + (2*a^2*(21*A + 27*B + 19*C)*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(105*d) + (2*C*Sec[c + d*x]^(5/2)*(a + a*Sec
[c + d*x])^2*Sin[c + d*x])/(9*d) + (2*(9*B + 4*C)*Sec[c + d*x]^(5/2)*(a^2 + a^2*Sec[c + d*x])*Sin[c + d*x])/(6
3*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4082

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.
) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(n + 1))), x] + Dist[1/(n + 1), Int[(d
*Csc[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e,
 f, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[n, -1]

Rule 4103

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m +
n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*d*(m + n) + B*(b*d
*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] &&
NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]

Rule 4173

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(
(d*Csc[e + f*x])^n/(f*(m + n + 1))), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^
n*Simp[A*b*(m + n + 1) + b*C*n + (a*C*m + b*B*(m + n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A
, B, C, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] &&  !LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]

Rubi steps

\begin {align*} \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {2 \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (\frac {3}{2} a (3 A+C)+\frac {1}{2} a (9 B+4 C) \sec (c+d x)\right ) \, dx}{9 a}\\ &=\frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {2 (9 B+4 C) \sec ^{\frac {5}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d}+\frac {4 \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \left (\frac {3}{4} a^2 (21 A+9 B+11 C)+\frac {3}{4} a^2 (21 A+27 B+19 C) \sec (c+d x)\right ) \, dx}{63 a}\\ &=\frac {2 a^2 (21 A+27 B+19 C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{105 d}+\frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {2 (9 B+4 C) \sec ^{\frac {5}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d}+\frac {8 \int \sec ^{\frac {3}{2}}(c+d x) \left (\frac {21}{4} a^3 (12 A+9 B+8 C)+\frac {45}{4} a^3 (7 A+6 B+5 C) \sec (c+d x)\right ) \, dx}{315 a}\\ &=\frac {2 a^2 (21 A+27 B+19 C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{105 d}+\frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {2 (9 B+4 C) \sec ^{\frac {5}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d}+\frac {1}{7} \left (2 a^2 (7 A+6 B+5 C)\right ) \int \sec ^{\frac {5}{2}}(c+d x) \, dx+\frac {1}{15} \left (2 a^2 (12 A+9 B+8 C)\right ) \int \sec ^{\frac {3}{2}}(c+d x) \, dx\\ &=\frac {4 a^2 (12 A+9 B+8 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {4 a^2 (7 A+6 B+5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {2 a^2 (21 A+27 B+19 C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{105 d}+\frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {2 (9 B+4 C) \sec ^{\frac {5}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d}+\frac {1}{21} \left (2 a^2 (7 A+6 B+5 C)\right ) \int \sqrt {\sec (c+d x)} \, dx-\frac {1}{15} \left (2 a^2 (12 A+9 B+8 C)\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {4 a^2 (12 A+9 B+8 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {4 a^2 (7 A+6 B+5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {2 a^2 (21 A+27 B+19 C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{105 d}+\frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {2 (9 B+4 C) \sec ^{\frac {5}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d}+\frac {1}{21} \left (2 a^2 (7 A+6 B+5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\frac {1}{15} \left (2 a^2 (12 A+9 B+8 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {4 a^2 (12 A+9 B+8 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {4 a^2 (7 A+6 B+5 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {4 a^2 (12 A+9 B+8 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {4 a^2 (7 A+6 B+5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {2 a^2 (21 A+27 B+19 C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{105 d}+\frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {2 (9 B+4 C) \sec ^{\frac {5}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 7.29, size = 1270, normalized size = 4.36 \begin {gather*} \frac {4 \sqrt {2} A e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^4(c+d x) \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{15 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x))}+\frac {\sqrt {2} B e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^4(c+d x) \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{5 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x))}+\frac {8 \sqrt {2} C e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^4(c+d x) \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{45 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x))}+\frac {2 A \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{3 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sec ^{\frac {7}{2}}(c+d x)}+\frac {4 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{7 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sec ^{\frac {7}{2}}(c+d x)}+\frac {10 C \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{21 d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sec ^{\frac {7}{2}}(c+d x)}+\frac {\sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (\frac {2 (12 A+9 B+8 C) \cos (d x) \csc (c)}{15 d}+\frac {C \sec (c) \sec ^4(c+d x) \sin (d x)}{9 d}+\frac {\sec (c) \sec ^3(c+d x) (7 C \sin (c)+9 B \sin (d x)+18 C \sin (d x))}{63 d}+\frac {\sec (c) \sec ^2(c+d x) (45 B \sin (c)+90 C \sin (c)+63 A \sin (d x)+126 B \sin (d x)+112 C \sin (d x))}{315 d}+\frac {\sec (c) \sec (c+d x) (63 A \sin (c)+126 B \sin (c)+112 C \sin (c)+210 A \sin (d x)+180 B \sin (d x)+150 C \sin (d x))}{315 d}+\frac {2 (7 A+6 B+5 C) \tan (c)}{21 d}\right )}{(A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sec ^{\frac {7}{2}}(c+d x)} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(4*Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c + d*x]^4*Csc[
c]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((
2*I)*(c + d*x))])*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(15*d*E
^(I*d*x)*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])) + (Sqrt[2]*B*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c
 + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c + d*x]^4*Csc[c]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*
x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[
c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(5*d*E^(I*d*x)*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c +
2*d*x])) + (8*Sqrt[2]*C*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c +
d*x]^4*Csc[c]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4,
 7/4, -E^((2*I)*(c + d*x))])*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^
2))/(45*d*E^(I*d*x)*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])) + (2*A*Sqrt[Cos[c + d*x]]*EllipticF[(c
+ d*x)/2, 2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(3*d*(A + 2*
C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(7/2)) + (4*B*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2
, 2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(7*d*(A + 2*C + 2*B*
Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(7/2)) + (10*C*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Se
c[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(21*d*(A + 2*C + 2*B*Cos[c
+ d*x] + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(7/2)) + (Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c +
 d*x] + C*Sec[c + d*x]^2)*((2*(12*A + 9*B + 8*C)*Cos[d*x]*Csc[c])/(15*d) + (C*Sec[c]*Sec[c + d*x]^4*Sin[d*x])/
(9*d) + (Sec[c]*Sec[c + d*x]^3*(7*C*Sin[c] + 9*B*Sin[d*x] + 18*C*Sin[d*x]))/(63*d) + (Sec[c]*Sec[c + d*x]^2*(4
5*B*Sin[c] + 90*C*Sin[c] + 63*A*Sin[d*x] + 126*B*Sin[d*x] + 112*C*Sin[d*x]))/(315*d) + (Sec[c]*Sec[c + d*x]*(6
3*A*Sin[c] + 126*B*Sin[c] + 112*C*Sin[c] + 210*A*Sin[d*x] + 180*B*Sin[d*x] + 150*C*Sin[d*x]))/(315*d) + (2*(7*
A + 6*B + 5*C)*Tan[c])/(21*d)))/((A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(7/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1155\) vs. \(2(311)=622\).
time = 0.21, size = 1156, normalized size = 3.97

method result size
default \(\text {Expression too large to display}\) \(1156\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-a^2*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(8*(1/4*B+1/2*C)*(-1/56*cos(1/2*d*x+1/2*c)*(-2*
sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^4-5/42*cos(1/2*d*x+1/2*c)*(-2*sin(
1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+5/21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-
2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2
*c),2^(1/2)))+2*C*(-1/144*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x
+1/2*c)^2-1/2)^5-7/180*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/
2*c)^2-1/2)^3-14/15*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2
)^(1/2)+7/15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d
*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-7/15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2
*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-Ell
ipticE(cos(1/2*d*x+1/2*c),2^(1/2))))+8*(1/2*A+1/4*B)*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2
*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)
^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+8/5*(1/4*A+
1/2*B+1/4*C)/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(2
4*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Ell
ipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4-24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+12*(2*sin(1
/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)
^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*E
llipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*A/sin(1/2*d*x+1/2
*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*
cos(1/2*d*x+1/2*c)-(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),
2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 1.21, size = 304, normalized size = 1.04 \begin {gather*} -\frac {2 \, {\left (15 i \, \sqrt {2} {\left (7 \, A + 6 \, B + 5 \, C\right )} a^{2} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 15 i \, \sqrt {2} {\left (7 \, A + 6 \, B + 5 \, C\right )} a^{2} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 i \, \sqrt {2} {\left (12 \, A + 9 \, B + 8 \, C\right )} a^{2} \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 i \, \sqrt {2} {\left (12 \, A + 9 \, B + 8 \, C\right )} a^{2} \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (42 \, {\left (12 \, A + 9 \, B + 8 \, C\right )} a^{2} \cos \left (d x + c\right )^{4} + 30 \, {\left (7 \, A + 6 \, B + 5 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} + 7 \, {\left (9 \, A + 18 \, B + 16 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 45 \, {\left (B + 2 \, C\right )} a^{2} \cos \left (d x + c\right ) + 35 \, C a^{2}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{315 \, d \cos \left (d x + c\right )^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

-2/315*(15*I*sqrt(2)*(7*A + 6*B + 5*C)*a^2*cos(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x
+ c)) - 15*I*sqrt(2)*(7*A + 6*B + 5*C)*a^2*cos(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x
+ c)) + 21*I*sqrt(2)*(12*A + 9*B + 8*C)*a^2*cos(d*x + c)^4*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, c
os(d*x + c) + I*sin(d*x + c))) - 21*I*sqrt(2)*(12*A + 9*B + 8*C)*a^2*cos(d*x + c)^4*weierstrassZeta(-4, 0, wei
erstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (42*(12*A + 9*B + 8*C)*a^2*cos(d*x + c)^4 + 30*(7*A
+ 6*B + 5*C)*a^2*cos(d*x + c)^3 + 7*(9*A + 18*B + 16*C)*a^2*cos(d*x + c)^2 + 45*(B + 2*C)*a^2*cos(d*x + c) + 3
5*C*a^2)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^4)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(3/2)*(a+a*sec(d*x+c))**2*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3061 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2*sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))^2*(1/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

int((a + a/cos(c + d*x))^2*(1/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2), x)

________________________________________________________________________________________